Back to Search Start Over

On deficiency problems for graphs

Authors :
Freschi, Andrea
Hyde, Joseph
Treglown, Andrew
Publication Year :
2021

Abstract

Motivated by analogous questions in the setting of Steiner triple systems and Latin squares, Nenadov, Sudakov and Wagner [Completion and deficiency problems, Journal of Combinatorial Theory Series B, 2020] recently introduced the notion of graph deficiency. Given a global spanning property $\mathcal P$ and a graph $G$, the deficiency $\text{def}(G)$ of the graph $G$ with respect to the property $\mathcal P$ is the smallest non-negative integer $t$ such that the join $G*K_t$ has property $\mathcal P$. In particular, Nenadov, Sudakov and Wagner raised the question of determining how many edges an $n$-vertex graph $G$ needs to ensure $G*K_t$ contains a $K_r$-factor (for any fixed $r\geq 3$). In this paper we resolve their problem fully. We also give an analogous result which forces $G*K_t$ to contain any fixed bipartite $(n+t)$-vertex graph of bounded degree and small bandwidth.<br />Comment: 12 pages, author accepted manuscript, to appear in Combinatorics, Probability and Computing

Subjects

Subjects :
Mathematics - Combinatorics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2102.04389
Document Type :
Working Paper