Back to Search
Start Over
Capillary imbibition of monodisperse emulsions in confined microfluidic channels
- Publication Year :
- 2021
-
Abstract
- We investigate imbibition of a monodisperse emulsion into a low-aspect ratio microfluidic channel with the height h comparable to the droplet diameter d. For confinement ratio d/h = 1.2, the tightly confined disk-like droplets in the channel move more slowly compared to the average suspension velocity. Behind the meniscus that drives the imbibition, there is a droplet-free region, separated from the suspension region by a sharp concentration front. The suspension exhibits strong droplet density and velocity fluctuations, but on average, the suspension domain remains uniform. For weaker confinement, d/h = 0.65, the spherical droplets move faster than the average suspension flow, resulting in the formation of a dynamically unstable high-concentration region near the meniscus. We describe the macroscopic suspension dynamics using linear transport equations for the particle-phase flux and suspension flux that are driven by the local pressure gradient. A dipolar particle interaction model explains the observed large density and velocity fluctuations in terms of the dynamics of elongated particle clusters with different orientations.
- Subjects :
- Condensed Matter - Soft Condensed Matter
Physics - Fluid Dynamics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2102.02774
- Document Type :
- Working Paper