Back to Search Start Over

Stellar astrophysics in the near UV with VLT-CUBES

Authors :
Ernandes, H.
Evans, C. J.
Barbuy, B.
Castilho, B.
Cescutti, G.
Christlieb, N.
Cristiani, S.
Cupani, G.
Di Marcantonio, P.
Franchini, M.
Hansen, C.
Quirrenbach, A.
Smiljanic, R.
Source :
Proceedings of the SPIE, Volume 11447, id. 1144760 11 pp. (2020)
Publication Year :
2021

Abstract

Alongside future observations with the new European Extremely Large Telescope (ELT), optimised instruments on the 8-10m generation of telescopes will still be competitive at 'ground UV' wavelengths (3000-4000 A). The near UV provides a wealth of unique information on the nucleosynthesis of iron-peak elements, molecules, and neutron-capture elements. In the context of development of the near-UV CUBES spectrograph for ESO's Very Large Telescope (VLT), we are investigating the impact of spectral resolution on the ability to estimate chemical abundances for beryllium and more than 30 iron-peak and heavy elements. From work ahead of the Phase A conceptual design of CUBES, here we present a comparison of the elements observable at the notional resolving power of CUBES (R~20,000) to those with VLT-UVES (R~40,000). For most of the considered lines signal-to-noise is a more critical factor than resolution. We summarise the elements accessible with CUBES, several of which (e.g. Be, Ge, Hf) are now the focus of quantitative simulations as part of the ongoing Phase A study.

Details

Database :
arXiv
Journal :
Proceedings of the SPIE, Volume 11447, id. 1144760 11 pp. (2020)
Publication Type :
Report
Accession number :
edsarx.2102.02205
Document Type :
Working Paper
Full Text :
https://doi.org/10.1117/12.2562497