Back to Search Start Over

Phase Transitions for Support Recovery from Gaussian Linear Measurements

Authors :
Ramesh, Lekshmi
Murthy, Chandra R.
Tyagi, Himanshu
Publication Year :
2021

Abstract

We study the problem of recovering the common $k$-sized support of a set of $n$ samples of dimension $d$, using $m$ noisy linear measurements per sample. Most prior work has focused on the case when $m$ exceeds $k$, in which case $n$ of the order $(k/m)\log(d/k)$ is both necessary and sufficient. Thus, in this regime, only the total number of measurements across the samples matter, and there is not much benefit in getting more than $k$ measurements per sample. In the measurement-constrained regime where we have access to fewer than $k$ measurements per sample, we show an upper bound of $O((k^{2}/m^{2})\log d)$ on the sample complexity for successful support recovery when $m\ge 2\log d$. Along with the lower bound from our previous work, this shows a phase transition for the sample complexity of this problem around $k/m=1$. In fact, our proposed algorithm is sample-optimal in both the regimes. It follows that, in the $m\ll k$ regime, multiple measurements from the same sample are more valuable than measurements from different samples.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2102.00235
Document Type :
Working Paper