Back to Search
Start Over
Global-Local Propagation Network for RGB-D Semantic Segmentation
- Publication Year :
- 2021
-
Abstract
- Depth information matters in RGB-D semantic segmentation task for providing additional geometric information to color images. Most existing methods exploit a multi-stage fusion strategy to propagate depth feature to the RGB branch. However, at the very deep stage, the propagation in a simple element-wise addition manner can not fully utilize the depth information. We propose Global-Local propagation network (GLPNet) to solve this problem. Specifically, a local context fusion module(L-CFM) is introduced to dynamically align both modalities before element-wise fusion, and a global context fusion module(G-CFM) is introduced to propagate the depth information to the RGB branch by jointly modeling the multi-modal global context features. Extensive experiments demonstrate the effectiveness and complementarity of the proposed fusion modules. Embedding two fusion modules into a two-stream encoder-decoder structure, our GLPNet achieves new state-of-the-art performance on two challenging indoor scene segmentation datasets, i.e., NYU-Depth v2 and SUN-RGBD dataset.
- Subjects :
- Computer Science - Computer Vision and Pattern Recognition
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2101.10801
- Document Type :
- Working Paper