Back to Search
Start Over
Topological multiple recurrence of weakly mixing minimal systems for generalized polynomials
- Publication Year :
- 2021
-
Abstract
- Let $(X, T)$ be a weakly mixing minimal system, $p_1, \cdots, p_d$ be integer-valued generalized polynomials and $(p_1,p_2,\cdots,p_d)$ be non-degenerate. Then there exists a residual subset $X_0$ of $X$ such that for all $x\in X_0$ $$\{ (T^{p_1(n)}x, \cdots, T^{p_d(n)}x): n\in \mathbb{Z}\}$$ is dense in $X^d$.<br />Comment: 27 pages
- Subjects :
- Mathematics - Dynamical Systems
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2101.06959
- Document Type :
- Working Paper