Back to Search Start Over

Topological multiple recurrence of weakly mixing minimal systems for generalized polynomials

Authors :
Zhang, Ruifeng
Zhao, Jianjie
Publication Year :
2021

Abstract

Let $(X, T)$ be a weakly mixing minimal system, $p_1, \cdots, p_d$ be integer-valued generalized polynomials and $(p_1,p_2,\cdots,p_d)$ be non-degenerate. Then there exists a residual subset $X_0$ of $X$ such that for all $x\in X_0$ $$\{ (T^{p_1(n)}x, \cdots, T^{p_d(n)}x): n\in \mathbb{Z}\}$$ is dense in $X^d$.<br />Comment: 27 pages

Subjects

Subjects :
Mathematics - Dynamical Systems

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2101.06959
Document Type :
Working Paper