Back to Search
Start Over
Exponential integrators preserving first integrals or Lyapunov functions for conservative or dissipative systems
- Source :
- SIAM Journal on Scientific Computing (2016), Volume 38, Number 3, pages A1876--A1895
- Publication Year :
- 2020
-
Abstract
- In this paper, combining the ideas of exponential integrators and discrete gradients, we propose and analyze a new structure-preserving exponential scheme for the conservative or dissipative system $\dot{y} = Q(M y + \nabla U (y))$, where $Q$ is a $d\times d$ skew-symmetric or negative semidefinite real matrix, $M$ is a $d\times d$ symmetric real matrix, and $U : \mathbb{R}^d\rightarrow\mathbb{R}$ is a differentiable function. We present two properties of the new scheme. The paper is accompanied by numerical results that demonstrate the remarkable superiority of our new scheme in comparison with other structure-preserving schemes in the scientific literature.
- Subjects :
- Mathematics - Numerical Analysis
65L04, 65L05, 65M20, 65P10, 65Z05
Subjects
Details
- Database :
- arXiv
- Journal :
- SIAM Journal on Scientific Computing (2016), Volume 38, Number 3, pages A1876--A1895
- Publication Type :
- Report
- Accession number :
- edsarx.2012.13064
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1137/15M1023257