Back to Search
Start Over
Interactive Question Clarification in Dialogue via Reinforcement Learning
- Publication Year :
- 2020
-
Abstract
- Coping with ambiguous questions has been a perennial problem in real-world dialogue systems. Although clarification by asking questions is a common form of human interaction, it is hard to define appropriate questions to elicit more specific intents from a user. In this work, we propose a reinforcement model to clarify ambiguous questions by suggesting refinements of the original query. We first formulate a collection partitioning problem to select a set of labels enabling us to distinguish potential unambiguous intents. We list the chosen labels as intent phrases to the user for further confirmation. The selected label along with the original user query then serves as a refined query, for which a suitable response can more easily be identified. The model is trained using reinforcement learning with a deep policy network. We evaluate our model based on real-world user clicks and demonstrate significant improvements across several different experiments.<br />Comment: COLING industry track
- Subjects :
- Computer Science - Computation and Language
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2012.09411
- Document Type :
- Working Paper