Back to Search Start Over

Fermat's Little Theorem and Euler's Theorem in a class of rings

Authors :
Hernandez, Fernanda D. de Melo
Melo, César A. Hernández
Tapia-Recillas, Horacio
Publication Year :
2020

Abstract

Considering $\mathbb{Z}_n$ the ring of integers modulo $n$, the classical Fermat-Euler theorem establishes the existence of a specific natural number $\varphi(n)$ satisfying the following property: $ x^{\varphi(n)}=1%\hspace{1.0cm}\text{for all}\hspace{0.2cm}x\in \mathbb{Z}_n^*, $ for all $x$ belonging to the group of units of $\mathbb{Z}_n$. In this manuscript, this result is extended to a class of rings that satisfies some mild conditions.<br />Comment: arXiv admin note: text overlap with arXiv:1911.07743

Subjects

Subjects :
Mathematics - Number Theory

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2012.06949
Document Type :
Working Paper