Back to Search
Start Over
Spatio-temporal chaos of one-dimensional thin elastic layer with the rate-and-state friction law
- Source :
- Phys. Rev. Research 4, 043115 (2022)
- Publication Year :
- 2020
-
Abstract
- Independent of specific local features, global spatio-temporal structures in diverse phenomena around bifurcation points are described by the complex Ginzburg-Landau equation (CGLE) derived using the reductive perturbation method, which includes prediction of spatio-temporal chaos. The generality in the CGLE scheme includes oscillatory instability in slip behavior between stable and unstable regimes. Such slip transitions accompanying spatio-temporal chaos is expected for frictional interfaces of a thin elastic layer made of soft solids, such as rubber or gel, where especially chaotic behavior may be easily discovered due to their compliance. Slow earthquakes observed in the aseismic-to-seismogenic transition zone along a subducting plate are also potential candidates. This article focuses on the common properties of slip oscillatory instability from the viewpoint of a CGLE approach by introducing a drastically simplified model of an elastic body with a thin layer, whose local expression in space and time allows us to employ conventional reduction methods. Special attention is paid to incorporate a rate-and-state friction law supported by microscopic mechanisms beyond the Coulomb friction law. We discuss similarities and discrepancies in the oscillatory instability observed or predicted in soft matter or a slow earthquake.<br />Comment: 16 pages, 6 figures
- Subjects :
- Nonlinear Sciences - Adaptation and Self-Organizing Systems
Subjects
Details
- Database :
- arXiv
- Journal :
- Phys. Rev. Research 4, 043115 (2022)
- Publication Type :
- Report
- Accession number :
- edsarx.2012.01799
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PhysRevResearch.4.043115