Back to Search
Start Over
The Bohr Phenomenon for analytic functions on simply connected domains
- Publication Year :
- 2020
-
Abstract
- In this paper, we investigate the Bohr phenomenon for the class of analytic functions defined on the simply connected domain \begin{equation*} \Omega_{\gamma}=\bigg\{z\in\mathbb{C} : \bigg|z+\frac{\gamma}{1-\gamma}\bigg|<\frac{1}{1-\gamma}\bigg\}\;\; \text{for}\;\; 0\leq \gamma<1. \end{equation*} We study improved Bohr radius, Bohr-Rogosinski radius and refined Bohr radius for the class of analytic functions defined in $ \Omega_{\gamma} $, and obtain several sharp results.<br />Comment: 18 pages
- Subjects :
- Mathematics - Complex Variables
30C45, 30C50, 30C80
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2011.13890
- Document Type :
- Working Paper