Back to Search
Start Over
ColdGAN: Resolving Cold Start User Recommendation by using Generative Adversarial Networks
- Publication Year :
- 2020
-
Abstract
- Mitigating the new user cold-start problem has been critical in the recommendation system for online service providers to influence user experience in decision making which can ultimately affect the intention of users to use a particular service. Previous studies leveraged various side information from users and items; however, it may be impractical due to privacy concerns. In this paper, we present ColdGAN, an end-to-end GAN based model with no use of side information to resolve this problem. The main idea of the proposed model is to train a network that learns the rating distributions of experienced users given their cold-start distributions. We further design a time-based function to restore the preferences of users to cold-start states. With extensive experiments on two real-world datasets, the results show that our proposed method achieves significantly improved performance compared with the state-of-the-art recommenders.
- Subjects :
- Computer Science - Artificial Intelligence
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2011.12566
- Document Type :
- Working Paper