Back to Search Start Over

Convergence problem of Schr\'odinger equation in Fourier-Lebesgue spaces with rough data and random data

Authors :
Yan, Xiangqian
Zhao, Yajuan
Yan, Wei
Publication Year :
2020

Abstract

In this paper, we consider the convergence problem of Schr\"odinger equation. Firstly, we show the almost everywhere pointwise convergence of Schr\"odinger equation in Fourier-Lebesgue spaces $\hat{H}^{\frac{1}{p},\frac{p}{2}}(\mathbb{R})(4\leq p<\infty),$ $\hat{H}^{\frac{3 s_{1}}{p},\frac{2p}{3}}(\mathbb{R}^2)(s_{1}>\frac{1}{3},3\leq p<\infty),$ $\hat{H}^{\frac{2 s_{1}}{p},p}(\mathbb{R}^n)(s_{1}>\frac{n}{2(n+1)},2\leq p<\infty,n\geq3)$ with rough data. Secondly, we show that the maximal function estimate related to one Schr\"odinger equation can fail with data in $\hat{H}^{s,\frac{p}{2}}(\mathbb{R})(s<\frac{1}{p})$. Finally, we show the stochastic continuity of Schr\"odinger equation with random data in $\hat{L}^{r}(\mathbb{R}^n)(2\leq r<\infty)$ almost surely. The main ingredients are Lemmas 2.4, 2.5, 3.2-3.4.<br />Comment: page 15

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2011.07134
Document Type :
Working Paper