Back to Search Start Over

(Un)fairness in Post-operative Complication Prediction Models

Authors :
Tripathi, Sandhya
Fritz, Bradley A.
Abdelhack, Mohamed
Avidan, Michael S.
Chen, Yixin
King, Christopher R.
Publication Year :
2020

Abstract

With the current ongoing debate about fairness, explainability and transparency of machine learning models, their application in high-impact clinical decision-making systems must be scrutinized. We consider a real-life example of risk estimation before surgery and investigate the potential for bias or unfairness of a variety of algorithms. Our approach creates transparent documentation of potential bias so that the users can apply the model carefully. We augment a model-card like analysis using propensity scores with a decision-tree based guide for clinicians that would identify predictable shortcomings of the model. In addition to functioning as a guide for users, we propose that it can guide the algorithm development and informatics team to focus on data sources and structures that can address these shortcomings.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2011.02036
Document Type :
Working Paper