Back to Search Start Over

Monitoring the edges of a graph using distances

Authors :
Foucaud, Florent
Kao, Shih-Shun
Klasing, Ralf
Miller, Mirka
Ryan, Joe
Source :
Discrete Applied Mathematics 319:424-438, 2022
Publication Year :
2020

Abstract

We introduce a new graph-theoretic concept in the area of network monitoring. A set $M$ of vertices of a graph $G$ is a \emph{distance-edge-monitoring set} if for every edge $e$ of $G$, there is a vertex $x$ of $M$ and a vertex $y$ of $G$ such that $e$ belongs to all shortest paths between $x$ and $y$. We denote by $dem(G)$ the smallest size of such a set in $G$. The vertices of $M$ represent distance probes in a network modeled by $G$; when the edge $e$ fails, the distance from $x$ to $y$ increases, and thus we are able to detect the failure. It turns out that not only we can detect it, but we can even correctly locate the failing edge. In this paper, we initiate the study of this new concept. We show that for a nontrivial connected graph $G$ of order $n$, $1\leq dem(G)\leq n-1$ with $dem(G)=1$ if and only if $G$ is a tree, and $dem(G)=n-1$ if and only if it is a complete graph. We compute the exact value of $dem$ for grids, hypercubes, and complete bipartite graphs. Then, we relate $dem$ to other standard graph parameters. We show that $demG)$ is lower-bounded by the arboricity of the graph, and upper-bounded by its vertex cover number. It is also upper-bounded by twice its feedback edge set number. Moreover, we characterize connected graphs $G$ with $dem(G)=2$. Then, we show that determining $dem(G)$ for an input graph $G$ is an NP-complete problem, even for apex graphs. There exists a polynomial-time logarithmic-factor approximation algorithm, however it is NP-hard to compute an asymptotically better approximation, even for bipartite graphs of small diameter and for bipartite subcubic graphs. For such instances, the problem is also unlikey to be fixed parameter tractable when parameterized by the solution size.<br />Comment: 19 pages; 5 figures. A preliminary version appeared in the proceedings of CALDAM 2020

Details

Database :
arXiv
Journal :
Discrete Applied Mathematics 319:424-438, 2022
Publication Type :
Report
Accession number :
edsarx.2011.00029
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.dam.2021.07.002