Back to Search Start Over

Beyond Lazy Training for Over-parameterized Tensor Decomposition

Authors :
Wang, Xiang
Wu, Chenwei
Lee, Jason D.
Ma, Tengyu
Ge, Rong
Publication Year :
2020

Abstract

Over-parametrization is an important technique in training neural networks. In both theory and practice, training a larger network allows the optimization algorithm to avoid bad local optimal solutions. In this paper we study a closely related tensor decomposition problem: given an $l$-th order tensor in $(R^d)^{\otimes l}$ of rank $r$ (where $r\ll d$), can variants of gradient descent find a rank $m$ decomposition where $m > r$? We show that in a lazy training regime (similar to the NTK regime for neural networks) one needs at least $m = \Omega(d^{l-1})$, while a variant of gradient descent can find an approximate tensor when $m = O^*(r^{2.5l}\log d)$. Our results show that gradient descent on over-parametrized objective could go beyond the lazy training regime and utilize certain low-rank structure in the data.<br />Comment: NeurIPS 2020; the first two authors contribute equally

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2010.11356
Document Type :
Working Paper