Back to Search Start Over

Two-stage generative adversarial networks for document image binarization with color noise and background removal

Authors :
Suh, Sungho
Kim, Jihun
Lukowicz, Paul
Lee, Yong Oh
Publication Year :
2020

Abstract

Document image enhancement and binarization methods are often used to improve the accuracy and efficiency of document image analysis tasks such as text recognition. Traditional non-machine-learning methods are constructed on low-level features in an unsupervised manner but have difficulty with binarization on documents with severely degraded backgrounds. Convolutional neural network-based methods focus only on grayscale images and on local textual features. In this paper, we propose a two-stage color document image enhancement and binarization method using generative adversarial neural networks. In the first stage, four color-independent adversarial networks are trained to extract color foreground information from an input image for document image enhancement. In the second stage, two independent adversarial networks with global and local features are trained for image binarization of documents of variable size. For the adversarial neural networks, we formulate loss functions between a discriminator and generators having an encoder-decoder structure. Experimental results show that the proposed method achieves better performance than many classical and state-of-the-art algorithms over the Document Image Binarization Contest (DIBCO) datasets, the LRDE Document Binarization Dataset (LRDE DBD), and our shipping label image dataset. We plan to release the shipping label dataset as well as our implementation code at github.com/opensuh/DocumentBinarization/.<br />Comment: Submitted to Pattern Recognition, Elsevier

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2010.10103
Document Type :
Working Paper