Back to Search
Start Over
The stable hull of an exact $\infty$-category
- Source :
- Homology, Homotopy and Applications, vol. 24(2), 2022, pp.195-220
- Publication Year :
- 2020
-
Abstract
- We construct a left adjoint $\mathcal{H}^\text{st}\colon \mathbf{Ex}_{\infty} \rightarrow \mathbf{St}_{\infty}$ to the inclusion $\mathbf{St}_{\infty} \hookrightarrow \mathbf{Ex}_{\infty}$ of the $\infty$-category of stable $\infty$-categories into the $\infty$-category of exact $\infty$-categories, which we call the stable hull. For every exact $\infty$-category $\mathcal{E}$, the unit functor $\mathcal{E} \rightarrow \mathcal{H}^\text{st}(\mathcal{E})$ is fully faithful and preserves and reflects exact sequences. This provides an $\infty$-categorical variant of the Gabriel-Quillen embedding for ordinary exact categories. If $\mathcal{E}$ is an ordinary exact category, the stable hull $\mathcal{H}^\text{st}(\mathcal{E})$ is equivalent to the bounded derived $\infty$-category of $\mathcal{E}$.<br />Comment: 22 pages, accepted version
Details
- Database :
- arXiv
- Journal :
- Homology, Homotopy and Applications, vol. 24(2), 2022, pp.195-220
- Publication Type :
- Report
- Accession number :
- edsarx.2010.04957
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.4310/HHA.2022.v24.n2.a9