Back to Search Start Over

The stable hull of an exact $\infty$-category

Authors :
Klemenc, Jona
Source :
Homology, Homotopy and Applications, vol. 24(2), 2022, pp.195-220
Publication Year :
2020

Abstract

We construct a left adjoint $\mathcal{H}^\text{st}\colon \mathbf{Ex}_{\infty} \rightarrow \mathbf{St}_{\infty}$ to the inclusion $\mathbf{St}_{\infty} \hookrightarrow \mathbf{Ex}_{\infty}$ of the $\infty$-category of stable $\infty$-categories into the $\infty$-category of exact $\infty$-categories, which we call the stable hull. For every exact $\infty$-category $\mathcal{E}$, the unit functor $\mathcal{E} \rightarrow \mathcal{H}^\text{st}(\mathcal{E})$ is fully faithful and preserves and reflects exact sequences. This provides an $\infty$-categorical variant of the Gabriel-Quillen embedding for ordinary exact categories. If $\mathcal{E}$ is an ordinary exact category, the stable hull $\mathcal{H}^\text{st}(\mathcal{E})$ is equivalent to the bounded derived $\infty$-category of $\mathcal{E}$.<br />Comment: 22 pages, accepted version

Details

Database :
arXiv
Journal :
Homology, Homotopy and Applications, vol. 24(2), 2022, pp.195-220
Publication Type :
Report
Accession number :
edsarx.2010.04957
Document Type :
Working Paper
Full Text :
https://doi.org/10.4310/HHA.2022.v24.n2.a9