Back to Search
Start Over
On the Geometry and Linear Convergence of Primal-Dual Dynamics
- Publication Year :
- 2020
-
Abstract
- The paper proposes a variational-inequality based primal-dual dynamic that has a globally exponentially stable saddle-point solution when applied to solve linear inequality constrained optimization problems. A Riemannian geometric framework is proposed wherein we begin by framing the proposed dynamics in a fiber-bundle setting endowed with a Riemannian metric that captures the geometry of the gradient (of the Lagrangian function). A strongly monotone gradient vector field is obtained by using the natural gradient adaptation on the Riemannian manifold. The Lyapunov stability analysis proves that this adaption leads to a globally exponentially stable saddle-point solution. Further, with numeric simulations we show that the scaling a key parameter in the Riemannian metric results in an accelerated convergence to the saddle-point solution.<br />Comment: arXiv admin note: text overlap with arXiv:1905.04521
- Subjects :
- Mathematics - Optimization and Control
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2010.02738
- Document Type :
- Working Paper