Back to Search
Start Over
Fun with $F_{24}$
- Publication Year :
- 2020
-
Abstract
- We study some special features of $F_{24}$, the holomorphic $c=12$ superconformal field theory (SCFT) given by 24 chiral free fermions. We construct eight different Lie superalgebras of "physical" states of a chiral superstring compactified on $F_{24}$, and we prove that they all have the structure of Borcherds-Kac-Moody superalgebras. This produces a family of new examples of such superalgebras. The models depend on the choice of an $\mathcal{N}=1$ supercurrent on $F_{24}$, with the admissible choices labeled by the semisimple Lie algebras of dimension 24. We also discuss how $F_{24}$, with any such choice of supercurrent, can be obtained via orbifolding from another distinguished $c=12$ holomorphic SCFT, the $\mathcal{N}=1$ supersymmetric version of the chiral CFT based on the $E_8$ lattice.<br />Comment: 46 pages. v2: minor corrections
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2009.14710
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1007/JHEP02(2021)039