Back to Search Start Over

The model reduction of the Vlasov-Poisson-Fokker-Planck system to the Poisson-Nernst-Planck system via the Deep Neural Network Approach

Authors :
Lee, Jae Yong
Jang, Jin Woo
Hwang, Hyung Ju
Publication Year :
2020

Abstract

The model reduction of a mesoscopic kinetic dynamics to a macroscopic continuum dynamics has been one of the fundamental questions in mathematical physics since Hilbert's time. In this paper, we consider a diagram of the diffusion limit from the Vlasov-Poisson-Fokker-Planck (VPFP) system on a bounded interval with the specular reflection boundary condition to the Poisson-Nernst-Planck (PNP) system with the no-flux boundary condition. We provide a Deep Learning algorithm to simulate the VPFP system and the PNP system by computing the time-asymptotic behaviors of the solution and the physical quantities. We analyze the convergence of the neural network solution of the VPFP system to that of the PNP system via the Asymptotic-Preserving (AP) scheme. Also, we provide several theoretical evidence that the Deep Neural Network (DNN) solutions to the VPFP and the PNP systems converge to the a priori classical solutions of each system if the total loss function vanishes.<br />Comment: 49 pages, 16 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2009.13280
Document Type :
Working Paper