Back to Search Start Over

Long-Short Term Masking Transformer: A Simple but Effective Baseline for Document-level Neural Machine Translation

Authors :
Zhang, Pei
Chen, Boxing
Ge, Niyu
Fan, Kai
Publication Year :
2020

Abstract

Many document-level neural machine translation (NMT) systems have explored the utility of context-aware architecture, usually requiring an increasing number of parameters and computational complexity. However, few attention is paid to the baseline model. In this paper, we research extensively the pros and cons of the standard transformer in document-level translation, and find that the auto-regressive property can simultaneously bring both the advantage of the consistency and the disadvantage of error accumulation. Therefore, we propose a surprisingly simple long-short term masking self-attention on top of the standard transformer to both effectively capture the long-range dependence and reduce the propagation of errors. We examine our approach on the two publicly available document-level datasets. We can achieve a strong result in BLEU and capture discourse phenomena.<br />Comment: accepted to EMNLP 2020

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2009.09127
Document Type :
Working Paper