Back to Search
Start Over
Chui's conjecture in Bergman spaces
- Publication Year :
- 2020
-
Abstract
- We solve Chui's conjecture on the simplest fractions (i.e., sums of Cauchy kernels with unit coefficients) in weighted (Hilbert) Bergman spaces. Namely, for a wide class of weights, we prove that for every $N$, the simplest fractions with $N$ poles on the unit circle have minimal norm if and only if the poles are equispaced on the circle. We find sharp asymptotics of these norms. Furthermore, we describe the closure of the simplest fractions in weighted Bergman spaces, using an $L^2$ version of Thompson's theorem on dominated approximation by simplest fractions.
- Subjects :
- Mathematics - Complex Variables
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2009.01898
- Document Type :
- Working Paper