Back to Search Start Over

A Chirality-Based Quantum Leap

Authors :
Aiello, Clarice D.
Abbas, Muneer
Abendroth, John M.
Afanasev, Andrei
Agarwal, Shivang
Banerjee, Amartya S.
Beratan, David N.
Belling, Jason N.
Berche, Bertrand
Botana, Antia
Caram, Justin R.
Celardo, Giuseppe Luca
Cuniberti, Gianaurelio
Garcia-Etxarri, Aitzol
Dianat, Arezoo
Diez-Perez, Ismael
Guo, Yuqi
Gutierrez, Rafael
Herrmann, Carmen
Hihath, Joshua
Kale, Suneet
Kurian, Philip
Lai, Ying-Cheng
Lopez, Alexander
Medina, Ernesto
Mujica, Vladimiro
Naaman, Ron
Noormandipour, Mohammadreza
Palma, Julio L.
Paltiel, Yossi
Petuskey, William T.
Ribeiro-Silva, Joao Carlos
Saenz, Juan Jose
Santos, Elton J. G.
Solyanik, Maria
Sorger, Volker J.
Stemer, Dominik M.
Ugalde, Jesus M.
Valdes-Curiel, Ana
Varela, Solmar
Waldeck, David H.
Weiss, Paul S.
Zacharias, Helmut
Wang, Qing Hua
Publication Year :
2020

Abstract

Chiral degrees of freedom occur in matter and in electromagnetic fields and constitute an area of research that is experiencing renewed interest driven by recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials. The CISS effect underpins the fact that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision. Any technology that relies on optimal charge transport, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which is presently lacking. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking perspective provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects, and presents a vision for their future roles in enabling room-temperature quantum technologies.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2009.00136
Document Type :
Working Paper
Full Text :
https://doi.org/10.1021/acsnano.1c01347