Back to Search Start Over

IceCube-Gen2: The Window to the Extreme Universe

Authors :
Collaboration, The IceCube-Gen2
Aartsen, M. G.
Abbasi, R.
Ackermann, M.
Adams, J.
Aguilar, J. A.
Ahlers, M.
Ahrens, M.
Alispach, C.
Allison, P.
Amin, N. M.
Andeen, K.
Anderson, T.
Ansseau, I.
Anton, G.
Argüelles, C.
Arlen, T. C.
Auffenberg, J.
Axani, S.
Bagherpour, H.
Bai, X.
V., A. Balagopal
Barbano, A.
Bartos, I.
Bastian, B.
Basu, V.
Baum, V.
Baur, S.
Bay, R.
Beatty, J. J.
Becker, K. -H.
Tjus, J. Becker
BenZvi, S.
Berley, D.
Bernardini, E.
Besson, D. Z.
Binder, G.
Bindig, D.
Blaufuss, E.
Blot, S.
Bohm, C.
Bohmer, M.
Böser, S.
Botner, O.
Böttcher, J.
Bourbeau, E.
Bourbeau, J.
Bradascio, F.
Braun, J.
Bron, S.
Brostean-Kaiser, J.
Burgman, A.
Burley, R. T.
Buscher, J.
Busse, R. S.
Bustamante, M.
Campana, M. A.
Carnie-Bronca, E. G.
Carver, T.
Chen, C.
Chen, P.
Cheung, E.
Chirkin, D.
Choi, S.
Clark, B. A.
Clark, K.
Classen, L.
Coleman, A.
Collin, G. H.
Connolly, A.
Conrad, J. M.
Coppin, P.
Correa, P.
Cowen, D. F.
Cross, R.
Dave, P.
Deaconu, C.
De Clercq, C.
DeLaunay, J. J.
De Kockere, S.
Dembinski, H.
Deoskar, K.
De Ridder, S.
Desai, A.
Desiati, P.
de Vries, K. D.
de Wasseige, G.
de With, M.
DeYoung, T.
Dharani, S.
Diaz, A.
Díaz-Vélez, J. C.
Dujmovic, H.
Dunkman, M.
DuVernois, M. A.
Dvorak, E.
Ehrhardt, T.
Eller, P.
Engel, R.
Evans, J. J.
Evenson, P. A.
Fahey, S.
Farrag, K.
Fazely, A. R.
Felde, J.
Fienberg, A. T.
Filimonov, K.
Finley, C.
Fischer, L.
Fox, D.
Franckowiak, A.
Friedman, E.
Fritz, A.
Gaisser, T. K.
Gallagher, J.
Ganster, E.
Garcia-Fernandez, D.
Garrappa, S.
Gartner, A.
Gerhardt, L.
Gernhaeuser, R.
Ghadimi, A.
Glaser, C.
Glauch, T.
Glüsenkamp, T.
Goldschmidt, A.
Gonzalez, J. G.
Goswami, S.
Grant, D.
Grégoire, T.
Griffith, Z.
Griswold, S.
Gündüz, M.
Haack, C.
Hallgren, A.
Halliday, R.
Halve, L.
Halzen, F.
Hanson, J. C.
Hanson, K.
Hardin, J.
Haugen, J.
Haungs, A.
Hauser, S.
Hebecker, D.
Heinen, D.
Heix, P.
Helbing, K.
Hellauer, R.
Henningsen, F.
Hickford, S.
Hignight, J.
Hill, C.
Hill, G. C.
Hoffman, K. D.
Hoffmann, B.
Hoffmann, R.
Hoinka, T.
Hokanson-Fasig, B.
Holzapfel, K.
Hoshina, K.
Huang, F.
Huber, M.
Huber, T.
Huege, T.
Hughes, K.
Hultqvist, K.
Hünnefeld, M.
Hussain, R.
In, S.
Iovine, N.
Ishihara, A.
Jansson, M.
Japaridze, G. S.
Jeong, M.
Jones, B. J. P.
Jonske, F.
Joppe, R.
Kalekin, O.
Kang, D.
Kang, W.
Kang, X.
Kappes, A.
Kappesser, D.
Karg, T.
Karl, M.
Karle, A.
Katori, T.
Katz, U.
Kauer, M.
Keivani, A.
Kellermann, M.
Kelley, J. L.
Kheirandish, A.
Kim, J.
Kin, K.
Kintscher, T.
Kiryluk, J.
Kittler, T.
Kleifges, M.
Klein, S. R.
Koirala, R.
Kolanoski, H.
Köpke, L.
Kopper, C.
Kopper, S.
Koskinen, D. J.
Koundal, P.
Kovacevich, M.
Kowalski, M.
Krauss, C. B.
Krings, K.
Krückl, G.
Kulacz, N.
Kurahashi, N.
Gualda, C. Lagunas
Lahmann, R.
Lanfranchi, J. L.
Larson, M. J.
Latif, U.
Lauber, F.
Lazar, J. P.
Leonard, K.
Leszczyńska, A.
Li, Y.
Liu, Q. R.
Lohfink, E.
LoSecco, J.
Mariscal, C. J. Lozano
Lu, L.
Lucarelli, F.
Ludwig, A.
Lünemann, J.
Luszczak, W.
Lyu, Y.
Ma, W. Y.
Madsen, J.
Maggi, G.
Mahn, K. B. M.
Makino, Y.
Mallik, P.
Mancina, S.
Mandalia, S.
Mariş, I. C.
Marka, S.
Marka, Z.
Maruyama, R.
Mase, K.
Maunu, R.
McNally, F.
Meagher, K.
Medina, A.
Meier, M.
Meighen-Berger, S.
Merz, J.
Meyers, Z. S.
Micallef, J.
Mockler, D.
Momenté, G.
Montaruli, T.
Moore, R. W.
Morse, R.
Moulai, M.
Muth, P.
Naab, R.
Nagai, R.
Nam, J.
Naumann, U.
Necker, J.
Neer, G.
Nelles, A.
Nguyên, L. V.
Niederhausen, H.
Nisa, M. U.
Nowicki, S. C.
Nygren, D. R.
Oberla, E.
Pollmann, A. Obertacke
Oehler, M.
Olivas, A.
O'Sullivan, E.
Pan, Y.
Pandya, H.
Pankova, D. V.
Papp, L.
Park, N.
Parker, G. K.
Paudel, E. N.
Peiffer, P.
Heros, C. Pérez de los
Petersen, T. C.
Philippen, S.
Pieloth, D.
Pieper, S.
Pinfold, J. L.
Pizzuto, A.
Plaisier, I.
Plum, M.
Popovych, Y.
Porcelli, A.
Rodriguez, M. Prado
Price, P. B.
Przybylski, G. T.
Raab, C.
Raissi, A.
Rameez, M.
Rauch, L.
Rawlins, K.
Rea, I. C.
Rehman, A.
Reimann, R.
Renschler, M.
Renzi, G.
Resconi, E.
Reusch, S.
Rhode, W.
Richman, M.
Riedel, B.
Riegel, M.
Roberts, E. J.
Robertson, S.
Roellinghoff, G.
Rongen, M.
Rott, C.
Ruhe, T.
Ryckbosch, D.
Cantu, D. Rysewyk
Safa, I.
Herrera, S. E. Sanchez
Sandrock, A.
Sandroos, J.
Sandstrom, P.
Santander, M.
Sarkar, S.
Satalecka, K.
Scharf, M.
Schaufel, M.
Schieler, H.
Schlunder, P.
Schmidt, T.
Schneider, A.
Schneider, J.
Schröder, F. G.
Schumacher, L.
Sclafani, S.
Seckel, D.
Seunarine, S.
Shaevitz, M. H.
Sharma, A.
Shefali, S.
Silva, M.
Smith, D.
Smithers, B.
Snihur, R.
Soedingrekso, J.
Soldin, D.
Söldner-Rembold, S.
Song, M.
Southall, D.
Spiczak, G. M.
Spiering, C.
Stachurska, J.
Stamatikos, M.
Stanev, T.
Stein, R.
Stettner, J.
Steuer, A.
Stezelberger, T.
Stokstad, R. G.
Strotjohann, N. L.
Stürwald, T.
Stuttard, T.
Sullivan, G. W.
Taboada, I.
Taketa, A.
Tanaka, H. K. M.
Tenholt, F.
Ter-Antonyan, S.
Terliuk, A.
Tilav, S.
Tollefson, K.
Tomankova, L.
Tönnis, C.
Torres, J.
Toscano, S.
Tosi, D.
Trettin, A.
Tselengidou, M.
Tung, C. F.
Turcati, A.
Turcotte, R.
Turley, C. F.
Twagirayezu, J. P.
Ty, B.
Unger, E.
Elorrieta, M. A. Unland
Vandenbroucke, J.
van Eijk, D.
van Eijndhoven, N.
Vannerom, D.
van Santen, J.
Veberic, D.
Verpoest, S.
Vieregg, A.
Vraeghe, M.
Walck, C.
Watson, T. B.
Weaver, C.
Weindl, A.
Weinstock, L.
Weiss, M. J.
Weldert, J.
Welling, C.
Wendt, C.
Werthebach, J.
Whitehorn, N.
Wiebe, K.
Wiebusch, C. H.
Williams, D. R.
Wissel, S. A.
Wolf, M.
Wood, T. R.
Woschnagg, K.
Wrede, G.
Wren, S.
Wulff, J.
Xu, X. W.
Xu, Y.
Yanez, J. P.
Yoshida, S.
Yuan, T.
Zhang, Z.
Zierke, S.
Zöcklein, M.
Source :
J.Phys.G 48 (2021) 6, 060501
Publication Year :
2020

Abstract

The observation of electromagnetic radiation from radio to $\gamma$-ray wavelengths has provided a wealth of information about the universe. However, at PeV (10$^{15}$ eV) energies and above, most of the universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. The discovery of cosmic neutrinos with IceCube has opened this new window on the universe. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the processes and environments that govern the universe at the highest energies. IceCube-Gen2 is designed to: 1) Resolve the high-energy neutrino sky from TeV to EeV energies; 2) Investigate cosmic particle acceleration through multi-messenger observations; 3) Reveal the sources and propagation of the highest energy particles in the universe; 4) Probe fundamental physics with high-energy neutrinos. IceCube-Gen2 will increase the annual rate of observed cosmic neutrinos by a factor of ten compared to IceCube, and will be able to detect sources five times fainter than its predecessor. Furthermore, through the addition of a radio array, IceCube-Gen2 will extend the energy range by several orders of magnitude compared to IceCube. Construction will take 8 years and cost about \$350M. The goal is to have IceCube-Gen2 fully operational by 2033. IceCube-Gen2 will play an essential role in shaping the new era of multi-messenger astronomy, fundamentally advancing our knowledge of the high-energy universe. This challenging mission can be fully addressed only in concert with the new survey instruments across the electromagnetic spectrum and gravitational wave detectors which will be available in the coming years.<br />Comment: 56 pages, 29 figures

Details

Database :
arXiv
Journal :
J.Phys.G 48 (2021) 6, 060501
Publication Type :
Report
Accession number :
edsarx.2008.04323
Document Type :
Working Paper
Full Text :
https://doi.org/10.1088/1361-6471/abbd48