Back to Search
Start Over
Visualising the Vertical Energetic Landscape in Organic Photovoltaics
- Source :
- Joule 3 (10), 2513-2534 (2019)
- Publication Year :
- 2020
-
Abstract
- Energy level diagrams in organic electronic devices play a crucial role in device performance and interpretation of device physics. In the case of organic solar cells, it has become routine to estimate the photovoltaic gap of the donor:acceptor blend using the energy values measured on the individual blend components, resulting in a poor agreement with the corresponding open-circuit voltage of the device. To address this issue, we developed a method that allows a direct visualisation of the vertical energetic landscape in the blend, obtained by combining ultraviolet photoemission spectroscopy and argon cluster etching. We investigate both model and high-performance photovoltaic systems and demonstrate that the resulting photovoltaic gaps are in close agreement with the measured CT energies and open-circuit voltages. Furthermore, we show that this method allows us to study the evolution of the energetic landscape upon environmental degradation, critically important for understanding degradation mechanisms and development of mitigation strategies.
- Subjects :
- Physics - Applied Physics
Condensed Matter - Materials Science
Subjects
Details
- Database :
- arXiv
- Journal :
- Joule 3 (10), 2513-2534 (2019)
- Publication Type :
- Report
- Accession number :
- edsarx.2007.14278
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1016/j.joule.2019.06.018