Back to Search Start Over

Calibration-free quantitative phase imaging using data-driven aberration modeling

Authors :
Chang, Taean
Jo, Youngju
Choi, Gunho
Ryu, Donghun
Min, Hyun-Seok
Park, Yongkeun
Publication Year :
2020

Abstract

We present a data-driven approach to compensate for optical aberration in calibration-free quantitative phase imaging (QPI). Unlike existing methods that require additional measurements or a background region to correct aberrations, we exploit deep learning techniques to model the physics of aberration in an imaging system. We demonstrate the generation of a single-shot aberration-corrected field image by using a U-net-based deep neural network that learns a translation between an optical field with aberrations and an aberration-corrected field. The high fidelity of our method is demonstrated on 2D and 3D QPI measurements of various confluent eukaryotic cells, benchmarking against the conventional method using background subtractions.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2007.13038
Document Type :
Working Paper
Full Text :
https://doi.org/10.1364/OE.412009