Back to Search Start Over

Rainbow polygons for colored point sets in the plane

Authors :
Flores-Peñaloza, David
Kano, Mikio
Martínez-Sandoval, Leonardo
Orden, David
Tejel, Javier
Tóth, Csaba D.
Urrutia, Jorge
Vogtenhuber, Birgit
Source :
Discrete Mathematics 344(7) (2021), 112406
Publication Year :
2020

Abstract

Given a colored point set in the plane, a perfect rainbow polygon is a simple polygon that contains exactly one point of each color, either in its interior or on its boundary. Let $\operatorname{rb-index}(S)$ denote the smallest size of a perfect rainbow polygon for a colored point set $S$, and let $\operatorname{rb-index}(k)$ be the maximum of $\operatorname{rb-index}(S)$ over all $k$-colored point sets in general position; that is, every $k$-colored point set $S$ has a perfect rainbow polygon with at most $\operatorname{rb-index}(k)$ vertices. In this paper, we determine the values of $\operatorname{rb-index}(k)$ up to $k=7$, which is the first case where $\operatorname{rb-index}(k)\neq k$, and we prove that for $k\ge 5$, \[ \frac{40\lfloor (k-1)/2 \rfloor -8}{19} %Birgit: \leq\operatorname{rb-index}(k)\leq 10 \bigg\lfloor\frac{k}{7}\bigg\rfloor + 11. \] Furthermore, for a $k$-colored set of $n$ points in the plane in general position, a perfect rainbow polygon with at most $10 \lfloor\frac{k}{7}\rfloor + 11$ vertices can be computed in $O(n\log n)$ time.<br />Comment: 23 pages, 11 figures, to appear at Discrete Mathematics

Details

Database :
arXiv
Journal :
Discrete Mathematics 344(7) (2021), 112406
Publication Type :
Report
Accession number :
edsarx.2007.10139
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.disc.2021.112406