Back to Search Start Over

A Spectral Condition for Spectral Gap: Fast Mixing in High-Temperature Ising Models

Authors :
Eldan, Ronen
Koehler, Frederic
Zeitouni, Ofer
Publication Year :
2020

Abstract

We prove that Ising models on the hypercube with general quadratic interactions satisfy a Poincar\'{e} inequality with respect to the natural Dirichlet form corresponding to Glauber dynamics, as soon as the operator norm of the interaction matrix is smaller than $1$. The inequality implies a control on the mixing time of the Glauber dynamics. Our techniques rely on a localization procedure which establishes a structural result, stating that Ising measures may be decomposed into a mixture of measures with quadratic potentials of rank one, and provides a framework for proving concentration bounds for high temperature Ising models.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2007.08200
Document Type :
Working Paper