Back to Search Start Over

Political audience diversity and news reliability in algorithmic ranking

Authors :
Bhadani, Saumya
Yamaya, Shun
Flammini, Alessandro
Menczer, Filippo
Ciampaglia, Giovanni Luca
Nyhan, Brendan
Publication Year :
2020

Abstract

Newsfeed algorithms frequently amplify misinformation and other low-quality content. How can social media platforms more effectively promote reliable information? Existing approaches are difficult to scale and vulnerable to manipulation. In this paper, we propose using the political diversity of a website's audience as a quality signal. Using news source reliability ratings from domain experts and web browsing data from a diverse sample of 6,890 U.S. citizens, we first show that websites with more extreme and less politically diverse audiences have lower journalistic standards. We then incorporate audience diversity into a standard collaborative filtering framework and show that our improved algorithm increases the trustworthiness of websites suggested to users -- especially those who most frequently consume misinformation -- while keeping recommendations relevant. These findings suggest that partisan audience diversity is a valuable signal of higher journalistic standards that should be incorporated into algorithmic ranking decisions.<br />Comment: 47 pages, 23 figures, 5 tables (including supplementary materials). Nat Hum Behav (2022)

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2007.08078
Document Type :
Working Paper
Full Text :
https://doi.org/10.1038/s41562-021-01276-5