Back to Search Start Over

Minimal Length Effects on Motion of a Particle in Rindler Space

Authors :
Guo, Xiaobo
Liang, Kangkai
Mu, Benrong
Wang, Peng
Yang, Mingtao
Publication Year :
2020

Abstract

Various quantum theories of gravity predict the existence of a minimal measurable length. In this paper, we study effects of the minimal length on the motion of a particle in the Rindler space under a harmonic potential. This toy model captures key features of particle dynamics near a black hole horizon, and allows us to make three observations. First, we find that the chaotic behavior is stronger with the increases of the minimal length effects, which manifests that the maximum Lyapunov characteristic exponents mostly grow, and the KAM curves on Poincar\'{e} surfaces of section tend to disintegrate into chaotic layers. Second, in the presence of the minimal length effects, it can take a finite amount of Rindler time for a particle to cross the Rindler horizon, which implies a shorter scrambling time of black holes. Finally, it shows that some Lyapunov characteristic exponents can be greater than the surface gravity of the horizon, violating the recently conjectured universal upper bound. In short, our results reveal that quantum gravity effects may make black holes prone to more chaos and faster scrambling.<br />Comment: v1: 23 pages, 8 figures; v2: 24 pages, 8 figures, references added

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2007.07744
Document Type :
Working Paper