Back to Search
Start Over
ESPN: Extremely Sparse Pruned Networks
- Publication Year :
- 2020
-
Abstract
- Deep neural networks are often highly overparameterized, prohibiting their use in compute-limited systems. However, a line of recent works has shown that the size of deep networks can be considerably reduced by identifying a subset of neuron indicators (or mask) that correspond to significant weights prior to training. We demonstrate that an simple iterative mask discovery method can achieve state-of-the-art compression of very deep networks. Our algorithm represents a hybrid approach between single shot network pruning methods (such as SNIP) with Lottery-Ticket type approaches. We validate our approach on several datasets and outperform several existing pruning approaches in both test accuracy and compression ratio.
- Subjects :
- Computer Science - Machine Learning
Statistics - Machine Learning
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2006.15741
- Document Type :
- Working Paper