Back to Search
Start Over
Far-infrared laboratory spectroscopy of aminoacetonitrile and first interstellar detection of its vibrationally excited transitions
- Source :
- A&A 641, A160 (2020)
- Publication Year :
- 2020
-
Abstract
- Aminoacetonitrile, a molecule detected in the interstellar medium only towards the star-forming region Sagittarius B2 (Sgr B2) thus far, is considered an important prebiotic species. To date, observations were limited to ground state emission lines, whereas transitions from within vibrationally excited states remained undetected. We wanted to accurately determine the energies of the low-lying vibrational states of aminoacetonitrile, which are expected to be populated in Sgr B2(N1), the main hot core of Sgr B2(N). This step is fundamental in order to properly evaluate the vibration-rotation partition function of aminoacetonitrile as well as the line strengths of the rotational transitions of its vibrationally excited states. This is necessary to derive accurate column densities and secure the identification of these transitions in astronomical spectra. The far-infrared ro-vibrational spectrum of aminoacetonitrile has been recorded in absorption against a synchrotron source of continuum emission. Three bands, corresponding to the lowest vibrational modes of aminoacetonitrile, were observed in the frequency region below 500 cm$^{-1}$. The combined analysis of ro-vibrational and pure rotational data allowed us to prepare new spectral line catalogs for all the states under investigation. We used the imaging spectral line survey ReMoCA performed with ALMA to search for vibrationally excited aminoacetonitrile toward Sgr B2(N1). On the basis of these spectroscopic predictions, we report the interstellar detection of aminoacetonitrile in its $v_{11}=1$ and $v_{18}=1$ vibrational states toward Sgr B2(N1) in addition to emission in its vibrational ground state. The intensities of the identified $v_{11}=1$ and $v_{18}=1$ lines are consistent with the detected $v=0$ lines under LTE at a temperature of 200 K for an aminoacetonitrile column density of $1.1 \times 10^{17}$ cm$^{-2}$.<br />Comment: 14 pages, 7 figures, 5 tables, accepted for publication in A&A
- Subjects :
- Astrophysics - Astrophysics of Galaxies
Subjects
Details
- Database :
- arXiv
- Journal :
- A&A 641, A160 (2020)
- Publication Type :
- Report
- Accession number :
- edsarx.2006.13753
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1051/0004-6361/202038466