Back to Search Start Over

Canonical and DLPNO-based G4(MP2)XK-inspired composite wavefunction methods parametrized against large and chemically diverse training sets: Are they more accurate and/or robust than double hybrid DFT?

Authors :
Semidalas, Emmanouil
Martin, Jan M. L.
Source :
Journal of Chemical Theory and Computation 16, 4238-4255 (2020)
Publication Year :
2020

Abstract

The large and chemically diverse GMTKN55 benchmark was used as a training set for parametrizing composite wave function thermochemistry protocols akin to G4(MP2)XK theory (Chan et al, JCTC 2019, 15, 4478-4484). Even after reparametrization, the GMTKN55 WTMAD2 (weighted mean absolute deviation, type 2) for G4(MP2)-XK is actually inferior to that of the best rung-4 DFT functional, wB97M-V. By increasing the basis set for the MP2 part to def2-QZVPPD, we were able to substantially improve performance at modest cost (if an RI-MP2 approximation is made), with WTMAD2 for this G4(MP2)-XK-D method now comparable to the better rung-5 functionals (albeit at greater cost). A three-tier approach with a scaled MP3/def2-TZVPP intermediate step, however, leads to a G4(MP3)-D method that is markedly superior to even the best double hybrids wB97M(2) and revDSD-PBEP86-D4. Evaluating the CCSD(T) component with a triple-zeta, rather than split-valence, basis set yields only a modest further improvement that is incommensurate with the drastic increase in computational cost. G4(MP3)-D and G4(MP2)- XK-D have about 40% better WTMAD2, at similar or lower computational cost, than their counterparts G4 and G4(MP2), respectively: detailed comparison reveals that the difference lies in larger molecules due to basis set incompleteness error. An E2/ {T,Q} extrapolation and a CCSD(T)/def2-TZVP step provided the G4-T method of high accuracy and with just three fitted parameters. Using KS orbitals in MP2 leads to the G4(MP3|KS)-D method, which entirely eliminates the CCSD(T) step and has no steps costlier than scaled MP3; this shows a path forward to further improvements in double-hybrid density functional methods. G4-T-DLPNO, a variant in which post-MP2 corrections are evaluated at the DLPNO- CCSD(T) level, achieves nearly the accuracy of G4-T but is applicable to much larger systems.<br />Comment: J. Chem. Theor. Comp., ASAP (2020). CC:BY 4.0 Open Access article

Subjects

Subjects :
Physics - Chemical Physics

Details

Database :
arXiv
Journal :
Journal of Chemical Theory and Computation 16, 4238-4255 (2020)
Publication Type :
Report
Accession number :
edsarx.2006.04742
Document Type :
Working Paper
Full Text :
https://doi.org/10.1021/acs.jctc.0c00189