Back to Search Start Over

Domain Knowledge Alleviates Adversarial Attacks in Multi-Label Classifiers

Authors :
Melacci, Stefano
Ciravegna, Gabriele
Sotgiu, Angelo
Demontis, Ambra
Biggio, Battista
Gori, Marco
Roli, Fabio
Source :
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 12, pp. 9944-9959, 1 Dec. 2022
Publication Year :
2020

Abstract

Adversarial attacks on machine learning-based classifiers, along with defense mechanisms, have been widely studied in the context of single-label classification problems. In this paper, we shift the attention to multi-label classification, where the availability of domain knowledge on the relationships among the considered classes may offer a natural way to spot incoherent predictions, i.e., predictions associated to adversarial examples lying outside of the training data distribution. We explore this intuition in a framework in which first-order logic knowledge is converted into constraints and injected into a semi-supervised learning problem. Within this setting, the constrained classifier learns to fulfill the domain knowledge over the marginal distribution, and can naturally reject samples with incoherent predictions. Even though our method does not exploit any knowledge of attacks during training, our experimental analysis surprisingly unveils that domain-knowledge constraints can help detect adversarial examples effectively, especially if such constraints are not known to the attacker.<br />Comment: Accepted for publications in IEEE TPAMI journal

Details

Database :
arXiv
Journal :
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 12, pp. 9944-9959, 1 Dec. 2022
Publication Type :
Report
Accession number :
edsarx.2006.03833
Document Type :
Working Paper
Full Text :
https://doi.org/10.1109/TPAMI.2021.3137564