Back to Search Start Over

Waveguide Bandgap Engineering with an Array of Superconducting Qubits

Authors :
Brehm, Jan David
Poddubny, Alexander N.
Stehli, Alexander
Wolz, Tim
Rotzinger, Hannes
Ustinov, Alexey V.
Source :
npj Quantum Mater. 6, 10 (2021)
Publication Year :
2020

Abstract

Waveguide quantum electrodynamics offers a wide range of possibilities to effectively engineer interactions between artificial atoms via a one-dimensional open waveguide. While these interactions have been experimentally studied in the few qubit limit, the collective properties of such systems for larger arrays of qubits in a metamaterial configuration has so far not been addressed. Here, we experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control coupled to the mode continuum of a waveguide. By consecutively tuning the qubits to a common resonance frequency we observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap. Making use of the qubits quantum nonlinearity, we demonstrate control over the latter by inducing a transparency window in the bandgap region of the ensemble. The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial, thus paving the way for large-scale applications in superconducting waveguide quantum electrodynamics.<br />Comment: 7 pages, 4 figures

Details

Database :
arXiv
Journal :
npj Quantum Mater. 6, 10 (2021)
Publication Type :
Report
Accession number :
edsarx.2006.03330
Document Type :
Working Paper
Full Text :
https://doi.org/10.1038/s41535-021-00310-z