Back to Search
Start Over
Waveguide Bandgap Engineering with an Array of Superconducting Qubits
- Source :
- npj Quantum Mater. 6, 10 (2021)
- Publication Year :
- 2020
-
Abstract
- Waveguide quantum electrodynamics offers a wide range of possibilities to effectively engineer interactions between artificial atoms via a one-dimensional open waveguide. While these interactions have been experimentally studied in the few qubit limit, the collective properties of such systems for larger arrays of qubits in a metamaterial configuration has so far not been addressed. Here, we experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control coupled to the mode continuum of a waveguide. By consecutively tuning the qubits to a common resonance frequency we observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap. Making use of the qubits quantum nonlinearity, we demonstrate control over the latter by inducing a transparency window in the bandgap region of the ensemble. The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial, thus paving the way for large-scale applications in superconducting waveguide quantum electrodynamics.<br />Comment: 7 pages, 4 figures
- Subjects :
- Quantum Physics
Condensed Matter - Superconductivity
Subjects
Details
- Database :
- arXiv
- Journal :
- npj Quantum Mater. 6, 10 (2021)
- Publication Type :
- Report
- Accession number :
- edsarx.2006.03330
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1038/s41535-021-00310-z