Back to Search
Start Over
MultiXNet: Multiclass Multistage Multimodal Motion Prediction
- Publication Year :
- 2020
-
Abstract
- One of the critical pieces of the self-driving puzzle is understanding the surroundings of a self-driving vehicle (SDV) and predicting how these surroundings will change in the near future. To address this task we propose MultiXNet, an end-to-end approach for detection and motion prediction based directly on lidar sensor data. This approach builds on prior work by handling multiple classes of traffic actors, adding a jointly trained second-stage trajectory refinement step, and producing a multimodal probability distribution over future actor motion that includes both multiple discrete traffic behaviors and calibrated continuous position uncertainties. The method was evaluated on large-scale, real-world data collected by a fleet of SDVs in several cities, with the results indicating that it outperforms existing state-of-the-art approaches.<br />Comment: Accepted for publication at IEEE Intelligent Vehicles Symposium (IV) 2021
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2006.02000
- Document Type :
- Working Paper