Back to Search Start Over

Re-weighting of Vector-weighted Mechanisms for Utility Maximization under Differential Privacy

Authors :
Savitsky, Terrance D.
Hu, Jingchen
Williams, Matthew R.
Publication Year :
2020

Abstract

We address practical implementation of a risk-weighted pseudo posterior synthesizer for microdata dissemination with a new re-weighting strategy that maximizes utility of released synthetic data under at any level of formal privacy guarantee. Our re-weighting strategy applies to any vector-weighted pseudo posterior mechanism under which a vector of observation-indexed weights are used to downweight likelihood contributions for high disclosure risk records. We demonstrate our method on two different vector-weighted schemes that target high-risk records. Our new method for constructing record-indexed downeighting maximizes the data utility under any privacy budget for the vector-weighted synthesizers by adjusting the by-record weights, such that their individual Lipschitz bounds approach the bound for the entire database. Our method achieves an $(\epsilon = 2 \Delta_{\boldsymbol{\alpha}})-$asymptotic differential privacy (aDP) guarantee, globally, over the space of databases. We illustrate our methods using simulated highly skewed count data and compare the results to a scalar-weighted synthesizer under the Exponential Mechanism (EM). We also apply our methods to a sample of the Survey of Doctorate Recipients and demonstrate the practicality of our methods.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2006.01230
Document Type :
Working Paper