Back to Search Start Over

Weak Type Endpoint Estimates for the Commutators of Rough Singular Integral Operators

Authors :
Lan, Jiacheng
Tao, Xiangxing
Hu, Guoen
Publication Year :
2020

Abstract

Let $\Omega$ be homogeneous of degree zero and have mean value zero on the unit sphere ${S}^{n-1}$, $T_{\Omega}$ be the convolution singular integral operator with kernel $\frac{\Omega(x)}{|x|^n}$. For $b\in{\rm BMO}(\mathbb{R}^n)$, let $T_{\Omega,\,b}$ be the commutator of $T_{\Omega}$. In this paper, by establishing suitable sparse dominations, the authors establish some weak type endpoint estimates of $L\log L$ type for $T_{\Omega,\,b}$ when $\Omega\in L^q(S^{n-1})$ for some $q\in (1,\,\infty]$.<br />Comment: 15 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2005.04614
Document Type :
Working Paper