Back to Search Start Over

On-chip Integration of Si/SiGe-based Quantum Dots and Switched-capacitor Circuits

Authors :
Xu, Y.
Unseld, F. K.
Corna, A.
Zwerver, A. M. J.
Sammak, A.
Brousse, D.
Samkharadze, N.
Amitonov, S. V.
Veldhorst, M.
Scappucci, G.
Ishihara, R.
Vandersypen, L. M. K.
Publication Year :
2020

Abstract

Solid-state qubits integrated on semiconductor substrates currently require at least one wire from every qubit to the control electronics, leading to a so-called wiring bottleneck for scaling. Demultiplexing via on-chip circuitry offers an effective strategy to overcome this bottleneck. In the case of gate-defined quantum dot arrays, specific static voltages need to be applied to many gates simultaneously to realize electron confinement. When a charge-locking structure is placed between the quantum device and the demultiplexer, the voltage can be maintained locally. In this study, we implement a switched-capacitor circuit for charge-locking and use it to float the plunger gate of a single quantum dot. Parallel plate capacitors, transistors and quantum dot devices are monolithically fabricated on a Si/SiGe-based substrate to avoid complex off-chip routing. We experimentally study the effects of the capacitor and transistor size on the voltage accuracy of the floating node. Furthermore, we demonstrate that the electrochemical potential of the quantum dot can follow a 100 Hz pulse signal while the dot is partially floating, which is essential for applying this strategy in qubit experiments.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2005.03851
Document Type :
Working Paper
Full Text :
https://doi.org/10.1063/5.0012883