Back to Search
Start Over
Three-Omega Thermal-Conductivity Measurements with Curved Heater Geometries
- Source :
- Appl. Phys. Lett. 117, 073102 (2020)
- Publication Year :
- 2020
-
Abstract
- The three-omega method, a powerful technique to measure the thermal conductivity of nanometer-thick films and the interfaces between them, has historically employed straight conductive wires to act as both heaters and thermometers. When investigating stochastically prepared samples such as two-dimensional materials and nanomembranes, residue and excess material can make it difficult to fit the required millimeter-long straight wire on the sample surface. There are currently no available criteria for how diverting three-omega heater wires around obstacles affects the validity of the thermal measurement. In this Letter, we quantify the effect of wire curvature by performing three-omega experiments with a wide range of frequencies using both curved and straight heater geometries on SiO$_2$/Si samples. When the heating wire is curved, we find that the measured Si substrate thermal conductivity changes by only 0.2%. Similarly, we find that wire curvature has no significant effect on the determination of the thermal resistance of a $\sim$65 nm SiO$_2$ layer, even for the sharpest corners considered here, for which the largest measured ratio of the thermal penetration depth of the applied thermal wave to radius of curvature of the heating wire is 4.3. This result provides useful design criteria for three-omega experiments by setting a lower bound for the maximum ratio of thermal penetration depth to wire radius of curvature.<br />Comment: 4 pages, 3 figures
Details
- Database :
- arXiv
- Journal :
- Appl. Phys. Lett. 117, 073102 (2020)
- Publication Type :
- Report
- Accession number :
- edsarx.2005.01786
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1063/5.0011627