Back to Search
Start Over
Exponential integrability for log-concave measures
- Source :
- Analysis & PDE 16 (2023) 1271-1288
- Publication Year :
- 2020
-
Abstract
- Talagrand observed that finiteness of $\mathbb{E}\, e^{\frac{1}{2}|\nabla f(X)|^{2}}$ implies finiteness of $\mathbb{E}\, e^{\, f(X)}$ where $X$ is the standard Gaussian vector in $\mathbb{R}^{n}$ and $f$ is a smooth function with zero average. However, in this paper we show that finiteness of $ \mathbb{E}\, e^{\frac{1}{2}|\nabla f|^{2}} (1+|\nabla f|)^{-1}$ implies finiteness of $\mathbb{E}\, e^{\, f(X)}$, and we also obtain quantitative bounds \begin{align*} \log\, \mathbb{E}\, e^{\, f} \leq 10\, \mathbb{E}\, e^{\frac{1}{2}|\nabla f|^{2}} (1+|\nabla f|)^{-1}. \end{align*} Moreover, the extra factor $(1+|\nabla f|)^{-1}$ is the best possible in the sense that there is smooth $f$ with $\mathbb{E}\, e^{\,f} =\infty$ but $\mathbb{E}\, e^{\frac{1}{2}|\nabla f|^{2}} (1+|\nabla f|)^{-c}<\infty$ for all $c>1$. As an application we show corresponding dual inequalities for the discrete time dyadic martingales and its quadratic variations.<br />Comment: We included an application showing what is the corresponding dual inequality for the dyadic square function
Details
- Database :
- arXiv
- Journal :
- Analysis & PDE 16 (2023) 1271-1288
- Publication Type :
- Report
- Accession number :
- edsarx.2004.09704
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.2140/apde.2023.16.1271