Back to Search Start Over

Patterns of population displacement during mega-fires in California detected using Facebook Disaster Maps

Authors :
Jia, Shenyue
Kim, Seung Hee
Nghiem, Son V.
Doherty, Paul
Kafatos, Menas
Publication Year :
2020

Abstract

Facebook Disaster Maps (FBDM) is the first platform providing analysis-ready population change products derived from crowdsourced data targeting disaster relief practices. We evaluate the representativeness of FBDM data using the Mann-Kendall test and emerging hot and cold spots in an anomaly analysis to reveal the trend, magnitude, and agglommeration of population displacement during the Mendocino Complex and Woolsey fires in California, USA. Our results show that the distribution of FBDM pre-crisis users fits well with the total population from different sources. Due to usage habits, the elder population is underrepresented in FBDM data. During the two mega-fires in California, FBDM data effectively captured the temporal change of population arising from the placing and lifting of evacuation orders. Coupled with monotonic trends, the fall and rise of cold and hot spots of population revealed the areas with the greatest population drop and potential places to house the displaced residents. A comparison between the Mendocino Complex and Woolsey fires indicates that a densely populated region can be evacuated faster than a scarcely populated one, possibly due to the better access to transportation. In sparsely populated fire-prone areas, resources should be prioritized to move people to shelters as the displaced residents do not have many alternative options, while their counterparts in densely populated areas can utilize their social connections to seek temporary stay at nearby locations during an evacuation. Integrated with an assessment on underrepresented communities, FBDM data and the derivatives can provide much needed information of near real-time population displacement for crisis response and disaster relief. As applications and data generation mature, FBDM will harness crowdsourced data and aid first responder decision-making.<br />Comment: 16 pages with supplemental information

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2004.01084
Document Type :
Working Paper
Full Text :
https://doi.org/10.1088/1748-9326/ab8847