Back to Search
Start Over
Iterative Cauchy Thresholding: Regularisation with a heavy-tailed prior
- Publication Year :
- 2020
-
Abstract
- In the machine learning era, sparsity continues to attract significant interest due to the benefits it provides to learning models. Algorithms aiming to optimise the \(\ell_0\)- and \(\ell_1\)-norm are the common choices to achieve sparsity. In this work, an alternative algorithm is proposed, which is derived based on the assumption of a Cauchy distribution characterising the coefficients in sparse domains. The Cauchy distribution is known to be able to capture heavy-tails in the data, which are linked to sparse processes. We begin by deriving the Cauchy proximal operator and subsequently propose an algorithm for optimising a cost function which includes a Cauchy penalty term. We have coined our contribution as Iterative Cauchy Thresholding (ICT). Results indicate that sparser solutions can be achieved using ICT in conjunction with a fixed over-complete discrete cosine transform dictionary under a sparse coding methodology.<br />Comment: 7 pages, 4 figures, 2 tables
- Subjects :
- Electrical Engineering and Systems Science - Image and Video Processing
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2003.12507
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1109/ICIP40778.2020.9190736