Cite
Monte Carlo integration of non-differentiable functions on $[0,1]^\iota$, $\iota=1,\dots,d$, using a single determinantal point pattern defined on $[0,1]^d$
MLA
Coeurjolly, Jean-François, et al. Monte Carlo Integration of Non-Differentiable Functions on $[0,1]^\iota$, $\iota=1,\dots,D$, Using a Single Determinantal Point Pattern Defined on $[0,1]^d$. 2020. EBSCOhost, widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2003.10323&authtype=sso&custid=ns315887.
APA
Coeurjolly, J.-F., Mazoyer, A., & Amblard, P.-O. (2020). Monte Carlo integration of non-differentiable functions on $[0,1]^\iota$, $\iota=1,\dots,d$, using a single determinantal point pattern defined on $[0,1]^d$.
Chicago
Coeurjolly, Jean-François, Adrien Mazoyer, and Pierre-Olivier Amblard. 2020. “Monte Carlo Integration of Non-Differentiable Functions on $[0,1]^\iota$, $\iota=1,\dots,D$, Using a Single Determinantal Point Pattern Defined on $[0,1]^d$.” http://widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2003.10323&authtype=sso&custid=ns315887.