Back to Search
Start Over
On unsteady flows of pore pressure-activated granular materials
- Publication Year :
- 2020
-
Abstract
- We investigate mathematical properties of the system of nonlinear partial differential equations that describe, under certain simplifying assumptions, evolutionary processes in water-saturated granular materials. The unconsolidated solid matrix behaves as an ideal plastic material before the activation takes place and then it starts to flow as a Newtonian or a generalized Newtonian fluid. The plastic yield stress is non-constant and depends on the difference between the given lithostatic pressure and the pressure of the fluid in a pore space. We study unsteady three-dimensional flows in an impermeable container, subject to stick-slip boundary conditions. Under realistic assumptions on the data, we establish long-time and large-data existence theory.
- Subjects :
- Mathematics - Analysis of PDEs
Mathematical Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2003.06912
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1007/s00033-020-01424-3