Back to Search Start Over

AC Josephson effect between two superfluid time crystals

Authors :
Autti, Samuli
Heikkinen, Petri J.
Mäkinen, Jere T.
Volovik, Grigori E.
Zavjalov, Vladislav V.
Eltsov, Vladimir B.
Publication Year :
2020

Abstract

Quantum time crystals are systems characterised by spontaneously emerging periodic order in the time domain. A range of such phases has been reported. The concept has even been discussed in popular literature, and deservedly so: while the first speculation on a phase of broken time translation symmetry did not use the name "time crystal", it was later adopted from 1980's popular culture. For the physics community, however, the ultimate qualification of a new concept is its ability to provide predictions and insight. Confirming that time crystals manifest the basic dynamics of quantum mechanics is a necessary step in that direction. We study two adjacent quantum time crystals experimentally. The time crystals, realised by two magnon condensates in superfluid $^3$He-B, exchange magnons leading to opposite-phase oscillations in their populations -- AC Josephson effect -- while the defining periodic motion remains phase coherent throughout the experiment.<br />Comment: 7 pages, 2 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2003.06313
Document Type :
Working Paper
Full Text :
https://doi.org/10.1038/s41563-020-0780-y