Back to Search Start Over

Integral Quadratic Constraints on Linear Infinite-dimensional Systems for Robust Stability Analysis

Authors :
Matthieu, Barreau
W., Scherer Carsten
Frederic, Gouaisbaut
Alexandre, Seuret
Source :
IFAC WC 2020, Berlin
Publication Year :
2020

Abstract

This paper proposes a framework to assess the stability of an ordinary differential equation which is coupled to a 1D-partial differential equation (PDE). The stability theorem is based on a new result on Integral Quadratic Constraints (IQCs) and expressed in terms of two linear matrix inequalities with a moderate computational burden. The IQCs are not generated using dissipation inequalities involving the whole state of an infinite-dimensional system, but by using projection coefficients of the infinite-dimensional state. This permits to generalize our robustness result to many other PDEs. The proposed methodology is applied to a time-delay system and numerical results comparable to those in the literature are obtained.

Details

Database :
arXiv
Journal :
IFAC WC 2020, Berlin
Publication Type :
Report
Accession number :
edsarx.2003.06283
Document Type :
Working Paper