Back to Search Start Over

An analytic approach to cardinalities of sumsets

Authors :
Matolcsi, Dávid
Ruzsa, Imre
Shakan, George
Zhelezov, Dmitrii
Publication Year :
2020

Abstract

Let $d$ be a positive integer and $U \subset \mathbb{Z}^d$ finite. We study $$\beta(U) : = \inf_{\substack{A , B \neq \emptyset \\ \text{finite}}} \frac{|A+B+U|}{|A|^{1/2}{|B|^{1/2}}},$$ and other related quantities. We employ tensorization, which is not available for the doubling constant, $|U+U|/|U|$. For instance, we show $$\beta(U) = |U|,$$ whenever $U$ is a subset of $\{0,1\}^d$. Our methods parallel those used for the Pr\'ekopa-Leindler inequality, an integral variant of the Brunn-Minkowski inequality.<br />Comment: 25 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2003.04075
Document Type :
Working Paper