Back to Search
Start Over
Learning Delicate Local Representations for Multi-Person Pose Estimation
- Publication Year :
- 2020
-
Abstract
- In this paper, we propose a novel method called Residual Steps Network (RSN). RSN aggregates features with the same spatial size (Intra-level features) efficiently to obtain delicate local representations, which retain rich low-level spatial information and result in precise keypoint localization. Additionally, we observe the output features contribute differently to final performance. To tackle this problem, we propose an efficient attention mechanism - Pose Refine Machine (PRM) to make a trade-off between local and global representations in output features and further refine the keypoint locations. Our approach won the 1st place of COCO Keypoint Challenge 2019 and achieves state-of-the-art results on both COCO and MPII benchmarks, without using extra training data and pretrained model. Our single model achieves 78.6 on COCO test-dev, 93.0 on MPII test dataset. Ensembled models achieve 79.2 on COCO test-dev, 77.1 on COCO test-challenge dataset. The source code is publicly available for further research at https://github.com/caiyuanhao1998/RSN/<br />Comment: ECCV2020 Spotlight
- Subjects :
- Computer Science - Computer Vision and Pattern Recognition
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2003.04030
- Document Type :
- Working Paper